Проецирование (лат. Projicio – бросаю вперёд) – процесс получения изображения предмета (пространственного объекта) на какой-либо поверхности с помощью световых или зрительных лучей (лучей, условно соединяющих глаз наблюдателя с какой-либо точкой пространственного объекта), которые называются проецирующими.

Известны два метода проецирования: центральное и параллельное .

Центральное проецирование заключается в проведении через каждую точку (А, В, С ,…) изображаемого объекта и определённым образом выбранный центр проецирования (S ) прямой линии (SA , SB , >… — проецирующего луча ).

Рисунок 1.1 – Центральное проецирование

Введём следующие обозначения (Рисунок 1.1):

S – центр проецирования (глаз наблюдателя);

π 1 – плоскость проекций;

A, B, C

SA , SB – проецирующие прямые (проецирующие лучи).

Примечание : левой клавишей мыши можно переместить точку в горизонтальной плоскости, при щелчке на точке левой клавишей мыши, изменится направление перемещения и можно будет ее переместить по вертикали.

Центральной проекцией точки называется точка пересечения проецирующей прямой, проходящей через центр проецирования и объект проецирования (точку), с плоскостью проекций.

Свойство 1 . Каждой точке пространства соответствует единственная проекция, но каждой точке плоскости проекций соответствует множество точек пространства, лежащих на проецирующей прямой.

Докажем это утверждение.

На рисунке 1.1: точка А 1 – центральная проекция точки А на плоскости проекций π 1 . Но эту же проекцию могут иметь все точки, лежащие на проецирующей прямой. Возьмём на проецирующей прямой SA точку С . Центральная проекция точки С (С 1) на плоскости проекций π 1 совпадает с проекцией точки А (А 1):

  1. С SA ;
  2. SC ∩ π 1 =C 1 → C 1 ≡ A 1 .

Следует вывод, что по проекции точки нельзя судить однозначно о её положении в пространстве.

Чтобы устранить эту неопределенность, т.е. сделать чертеж обратимым , введём еще одну плоскость проекций (π 2) и ещё один центр проецирования (S 2) (Рисунок 1.2).

Рисунок 1.2 – Иллюстрация 1-го и 2-го свойств

Построим проекции точки А на плоскости проекций π 2 . Из всех точек пространства только точка А имеет своими проекциями А 1 на плоскость π 1 и А 2 на π 2 одновременно. Все другие точки лежащие на проецирующих лучах будут иметь хотя бы одну отличную проекцию от проекций точки А (например, точка В ).

Свойство 2 . Проекция прямой есть прямая.

Докажем данное свойство.

Соединим точки А и В между собой (Рисунок 1.2). Получим отрезок АВ , задающий прямую. Треугольник ΔSAB задает плоскость, обозначенную через σ. Известно, что две плоскости пересекаются по прямой: σ∩π 1 =А 1 В 1 , где А 1 В 1 – центральная проекция прямой, заданной отрезком АВ .

Метод центрального проецирования – это модель восприятия изображения глазом, применяется главным образом при выполнении перспективных изображений строительных объектов, интерьеров, а также в кинотехнике и оптике. Метод центрального проецирования не решает основной задачи, стоящей перед инженером – точно отразить форму, размеры предмета, соотношение размеров различных элементов.

1.2. Параллельное проецирование

Рассмотрим метод параллельного проецирования. Наложим три ограничения, которые позволят нам, пусть и в ущерб наглядности изображения, получить чертёж более удобным для использования его на практике:

  1. Удалим оба центра проекции в бесконечность. Таким образом, добьемся того, что проецирующие лучи из каждого центра станут параллельными, а, следовательно, соотношение истинной длины любого отрезка прямой и длины его проекции будут зависеть только от угла наклона этого отрезка к плоскостям проекций и не зависят от положения центра проекций;
  2. Зафиксируем направление проецирования относительно плоскостей проекций;
  3. Расположим плоскости проекций перпендикулярно друг другу, что позволит легко переходить от изображения на плоскостях проекций к реальному объекту в пространстве.

Таким образом, наложив эти ограничения на метод центрального проецирования, мы пришли к его частному случаю – методу параллельного проецирования (Рисунок 1.3).Проецирование, при котором проецирующие лучи, проходящие через каждую точку объекта, параллельно выбранному направлению проецирования P , называется параллельным.

Рисунок 1.3 – Метод параллельного проецирования

Введём обозначения:

Р – направление проецирования;

π 1 – горизонтальная плоскость проекций;

A, B – объекты проецирования – точки;

А 1 и В 1 – проекции точек А и В на плоскость проекций π 1 .

Параллельной проекцией точки называется точка пересечения проецирующей прямой, параллельной заданному направлению проецирования Р , с плоскостью проекций π 1 .

Проведём через точки А и В проецирующие лучи, параллельные заданному направлению проецирования Р . Проецирующий луч проведённый через точку А пересечёт плоскость проекций π 1 в точке А 1 . Аналогично проецирующий луч, проведённый через точку В пересечет плоскость проекций в точке В 1 . Соединив точки А 1 и В 1 , получим отрезок А 1 В 1 – проекция отрезка АВ на плоскость π 1 .

1.3. Ортогональное проецирование. Метод Монжа

Если направление проецирования Р перпендикулярно плоскости проекций p 1 , то проецирование называется прямоугольным (Рисунок 1.4),или ортогональным (греч. ortos – прямой, gonia – угол), если Р не перпендикулярно π 1 , то проецирование называется косоугольным .

Четырехугольник АА 1 В 1 В задаёт плоскость γ, которая называется проецирующей, поскольку она перпендикулярна к плоскости π 1 (γ⊥π 1). В дальнейшем будем использовать только прямоугольное проецирование.

Рисунок 1.4 – Ортогональное проецирование Рисунок 1.5- Монж, Гаспар (1746-1818)

Основоположником ортогонального проецирования считается французский учёный Гаспар Монж (Рисунок 1.5).

До Монжа строители, художники и учёные обладали довольно значительными сведениями о проекционных способах, и, всё же, только Гаспар Монж является творцом начертательной геометрии как науки.

Гаспар Монж родился 9 мая 1746 года в небольшом городке Боне (Бургундия) на востоке Франции в семье местного торговца. Он был старшим из пяти детей, которым отец, несмотря на низкое происхождение и относительную бедность семьи, постарался обеспечить самое лучшее образование из доступного в то время для выходцев из незнатного сословия. Его второй сын, Луи, стал профессором математики и астрономии, младший — Жан также профессором математики, гидрографии и навигации. Гаспар Монж получил первоначальное образование в городской школе ордена ораторианцев. Окончив её в 1762 году лучшим учеником, он поступил в колледж г. Лиона, также принадлежавший ораторианцам. Вскоре Гаспару доверяют там преподавание физики. Летом 1764 года Монж составил замечательный по точности план родного города Бона. Необходимые при этом способы и приборы для измерения углов и вычерчивания линий были изобретены самим составителем.

Во время обучения в Лионе получил предложение вступить в орден и остаться преподавателем колледжа, однако, вместо этого, проявив большие способности к математике, черчению и рисованию, сумел поступить в Мезьерскую школу военных инженеров, но (из-за происхождения) только на вспомогательное унтер-офицерское отделение и без денежного содержания. Тем не менее, успехи в точных науках и оригинальное решение одной из важных задач фортификации (о размещении укреплений в зависимости от расположения артиллерии противника) позволили ему в 1769 году стать ассистентом (помощником преподавателя) математики, а затем и физики, причём уже с приличным жалованием в 1800 ливров в год.

В 1770 году в возрасте 24-х лет Монж занимает должность профессора одновременно по двум кафедрам — математики и физики, и, кроме того, ведёт занятия по резанию камней. Начав с задачи точной резки камней по заданным эскизам применительно к архитектуре и фортификации, Монж пришёл к созданию методов, обобщённых им впоследствии в новой науке – начертательной геометрии, творцом которой он по праву считается. Учитывая возможность применения методов начертательной геометрии в военных целях при строительстве укреплений, руководство Мезьерской школы не допускало открытой публикации вплоть до 1799 года, книга вышла под названием Начертательная геометрия (Géométrie descriptive ) (стенографическая запись этих лекций была сделана в 1795 году). Изложенный в ней подход к чтению лекций по этой науке и выполнению упражнений сохранился до наших дней. Еще один значительный труд Монжа – Приложение анализа к геометрии (L’application de l’analyse à la géometrie , 1795) – представляет собой учебник аналитической геометрии, в котором особый акцент делается на дифференциальных соотношениях.

В 1780 был избран членом Парижской академии наук, в 1794 стал директором Политехнической школы. В течение восьми месяцев занимал пост морского министра в правительстве Наполеона, заведовал пороховыми и пушечными заводами республики, сопровождал Наполеона в его экспедиции в Египет (1798–1801). Наполеон пожаловал ему титул графа, удостоил многих других отличий.

Метод изображения объектов по Монжу заключается в двух основных моментах:

1. Положение геометрического объекта в пространстве, в данном примере точки А , рассматривается относительно двух взаимно перпендикулярных плоскостей π 1 и π 2 (Рисунок 1.6).

Они условно разделяют пространство на четыре квадранта. Точка А расположена в первом квадранте. Декартова система координат послужила основой для проекций Монжа. Монж заменил понятие осей проекций на линию пересечения плоскостей проекций (координатные оси) и предложил совместить координатные плоскости в одну путем поворота их вокруг координатных осей.

Рисунок 1.6 – Модель построения проекций точки

π 1 – горизонтальная (первая) плоскость проекций

π 2 – фронтальная (вторая) плоскость проекций

π 1 ∩π 2 — ось проекций (обозначим π 2 /π 1)

Рассмотрим пример проецирования точки А на две взаимно перпендикулярные плоскости проекций π 1 и π 2 .

Опустим из точки А перпендикуляры (проецирующие лучи) на плоскости π 1 и π 2 и отметим их основания, то есть точки пересечения этих перпендикуляров (проецирующих лучей) с плоскостями проекций. А 1 – горизонтальная (первая) проекция точки А; А 2 – фронтальная (вторая) проекция точки А; АА 1 и АА 2 – проецирующие прямые. Стрелки показывают направление проецирования на плоскости проекций π 1 и π 2 . Такая система позволяет однозначно определить положение точки относительно плоскостей проекций π 1 и π 2:

АА 1 ⊥π 1

А 2 А 0 ⊥π 2 /π 1 АА 1 = А 2 А 0 — расстояние от точки А до плоскости π 1

АА 2 ⊥π 2

А 1 А 0 ⊥π 2 /π 1 АА 2 = А 1 А 0 — расстояние от точки А до плоскости π 2

2. Совместим поворотом вокруг оси проекций π 2 /π 1 плоскости проекций в одну плоскость (π 1 с π 2), но так, чтобы изображения не накладывались друг на друга, (в направлении α, Рисунок 1.6), получим изображение, называемое прямоугольным чертежом (Рисунок 1.7):

Рисунок 1.7 – Ортогональный чертеж

Прямоугольный или ортогональный носит название эпюр Монжа .

Прямая А 2 А 1 называется линией проекционной связи , которая соединяет разноимённые проекции точки (А 2 — фронтальную и А 1 — горизонтальную) всегда перпендикулярна оси проекций (оси координат) А 2 А 1 ⊥π 2 /π 1 . На эпюре отрезки, обозначенные фигурными скобками, представляют собой:

  • А 0 А 1 – расстояние от точки А до плоскости π 2 , соответствующее координате y А;
  • А 0 А 2 – расстояние от точки А до плоскости π 1 , соответствующее координате z А.

1.4. Прямоугольные проекции точки. Свойства ортогонального чертежа

1. Две прямоугольные проекции точки лежат на одной линии проекционной связи, перпендикулярной к оси проекций.

2. Две прямоугольные проекции точки однозначно определяют её положение в пространстве относительно плоскостей проекций.

Убедимся в справедливости последнего утверждения, для чего повернём плоскость π 1 в исходное положение (когда π 1 ⊥π 2). Для того, чтобы построить точку А необходимо из точек А 1 и А 2 восстановить проецирующие лучи, а фактически – перпендикуляры к плоскостям π 1 и π 2 , соответственно. Точка пересечения этих перпендикуляров фиксирует в пространстве искомую точку А . Рассмотрим ортогональный чертеж точки А (Рисунок 1.8).

Рисунок 1.8 – Построение эпюра точки

Введём третью (профильную) плоскость проекций π 3 перпендикулярную π 1 и π 2 (задана осью проекций π 2 /π 3).

Расстояние от профильной проекции точки до вертикальной оси проекций А ‘ 0 A 3 позволяет определить расстояние от точки А до фронтальной плоскости проекций π 2 . Известно, что положение точки в пространстве можно зафиксировать относительно декартовой системы координат с помощью трёх чисел (координат) A (X A ; Y A ; Z A) или относительно плоскостей проекций с помощью её двух ортогональных проекций (A 1 =(X A ; Y A); A 2 =(X A ; Z A)). На ортогональном чертеже по двум проекциям точки можно определить три её координаты и, наоборот, по трём координатам точки, построить её проекции (Рисунок 1.9, а и б).

Рисунок 1.9 – Построение эпюра точки по её координатам

По расположению на эпюре проекций точки можно судить о её расположении в пространстве:

  • А А 1 лежит под осью координат X , а фронтальная — А 2 – над осью X , то можно говорить, что точка А принадлежит 1-му квадранту;
  • если на эпюре горизонтальная проекция точки А А 1 лежит над осью координат X , а фронтальная — А 2 – под осью X , то точка А принадлежит 3-му квадранту;
  • А А 1 и А 2 лежат над осью X , то точка А принадлежит 2-му квадранту;
  • если на эпюре горизонтальная и фронтальная проекции точки А А 1 и А 2 лежат под осью X , то точка А принадлежит 4-му квадранту;
  • если на эпюре проекция точки совпадает с самой точкой, то значит – точка принадлежит плоскости проекций;
  • точка, принадлежащая плоскости проекций или оси проекций (оси координат), называется точкой частного положения .

Для определения в каком квадранте пространства расположена точка, достаточно определить знак координат точки.

Зависимости квадранта положения точки и знаков координат
X Y Z
I + + +
II + +
III +
IV + +

Упражнение

Построить ортогональные проекции точки с координатами А (60, 20, 40) и определить в каком квадранте расположена точка.

Решение задачи: по оси OX отложить значение координаты X A =60 , затем через эту точку на оси OX восстановить линию проекционной связи, перпендикулярную к OX , по которой вверх отложить значение координаты Z A =40 , а вниз – значение координаты Y A =20 (Рисунок 1.10). Все координаты положительные, значит точка расположена в I квадранте.

Рисунок 1.10 – Решение задачи

1.5. Задачи для самостоятельного решения

1. По эпюру определите положение точки относительно плоскостей проекций (Рисунок 1.11).

Рисунок 1.11

2. Достройте недостающие ортогональные проекции точек А , В , С на плоскости проекций π 1 , π 2 , π 3 (Рисунок 1.12).

Рисунок 1.12

3. Постройте проекции точки:

  • Е , симметричной точке А относительно плоскости проекций π 1 ;
  • F , симметричной точке В относительно плоскости проекций π 2 ;
  • G , симметричной точке С относительно оси проекций π 2 /π 1 ;
  • H , симметричной точке D относительно биссекторной плоскости второго и четвертого квадрантов.

4. Постройте ортогональные проекции точки К , расположенной во втором квадранте и удаленной от плоскостей проекций π 1 на 40 мм, от π 2 — на 15 мм.

3.1. Общие сведения о проецировании . Изображения предметов на чертежах в соответствии с правилами государственного стандарта выполняют по способу (методу) прямоугольного проецирования. Проецированием называют процесс построения проекции предмета. Как получаются проекции? Рассмотрите такой пример.

Возьмем в пространстве произвольную точку А и какую-нибудь плоскость Н (рис. 37). Проведем через точку А прямую так, чтобы она пересекала плоскость Н в некоторой точке а. Тогда точка а будет проекцией точки А. Плоскость, на которой получается проекция, называется плоскостью проекций. Прямую Аа называют проецирующим лучом. С его помощью точка А проецируется на плоскость Н. Указанным способом могут быть построены проекции всех точек любой пространственной фигуры.

Рис. 37. Получение проекций точки

Следовательно, чтобы построить проекцию какой-либо фигуры на плоскости, необходимо через точки этой фигуры провести воображаемые проецирующие лучи до их пересечения с плоскостью. Проекции всех точек фигуры образуют проекцию заданной фигуры. Рассмотрим получение проекции какой-нибудь геометрической фигуры, например треугольника (рис. 38).

Рис. 38. Проекция фигуры

Будем в дальнейшем обозначать точки, взятые на предмете, прописными буквами, а их проекции - строчными. Проекцией точки А на заданную плоскость и будет точка 0 как результат пересечения проецирующего луча Аа с плоскостью проекций. Проекциями точек В и С будут точки b и с. Соединив на плоскости точки а, Ь и с отрезками прямых, получим фигуру abc, которая и будет проекцией заданной фигуры ABC.

Представление о проекции можно получить, рассматривая тени предметов. Возьмем, например, проволочную модель призмы (рис. 39). Пусть эта модель при освещении солнечными лучами отбрасывает тень на стену. Полученную таким образом тень можно принять за проекцию заданного предмета.

Рис. 39. Получение тени модели

Слово «проекция» латинское. В переводе на русский язык оно означает «бросать (отбрасывать) вперед».

Положите на бумагу какой-нибудь плоский предмет и обведите его карандашом. Вы получите изображение, соответствующее проекции этого предмета. Примерами проекций являются также фотографические снимки, кинокадры и др.

  1. Что называется проецированием? Приведите примеры проекций.
  2. Как построить на плоскости проекцию точки? проекцию фигуры?

3.2. Центральное и параллельное проецирование . Если проецирующие лучи, с помощью которых строится проекция предмета, исходят из одной точки, проецирование называется центральным (рис. 40). Точка, из которой исходят лучи, называется центром проецирования. Полученная при этом проекция называется центральной .

Рис. 40. Центральное проецирование

Центральную проекцию часто называют перспективой . Примерами центральной проекции являются фотоснимки и кинокадры, тени, отброшенные от предмета лучами электрической лампочки и др. Центральные проекции применяют в рисовании с натуры.

Если проецирующие лучи параллельны друг другу (рис. 41), то проецирование называется параллельным . а полученная проекция - параллельной. Примером параллельной проекции можно условно считать солнечные тени предметов (рис. 39).

Строить изображение предмета в параллельной проекции проще, чем в центральной. В черчении такие проекции используются для построения чертежей и наглядных изображений.

При параллельном проецировании все лучи падают на плоскость проекций под одинаковым углом. Если это любой острый угол, как на рисунке 41, то проецирование называется косоугольным .

Рис. 41. Косоугольное проецирование

В том случае, когда проецирующие лучи перпендикулярны плоскости проекций (рис. 42), т. е. составляют с ней угол 90°, проецирование называют прямоугольным . Полученная при этом проекция называется прямоугольной.

Рис. 42. Прямоугольное проецирование

Прямоугольное проецирование широко используется для построения изображений на чертежах. Большинство чертежей в учебнике выполнено по этому способу.

  1. Какое проецирование называется центральным, параллельным, прямоугольным, косоугольным?
  2. Какой способ проецирования используется при построении чертежа и почему?

Введение

Все разделы начертательной геометрии пользуются одним методом – методом проецирования, поэтому чертежи, применяемые не только в начертательной геометрии, называются проекционные чертежи .

Метод проецирования заключается в том, что любая из точек множества точек пространства может быть спроецирована с помощью проецирующих лучей на любую поверхность. Для этого представим некоторую заданную поверхность (рис.1) и точку А в пространстве. При проведении луча S через точку А в направлении поверхности последний пересечет ее в точке А 1 . Точку А называют проецируемой точкой . Плоскость α, на которой получают проекцию, называют плоскость проекций . Точка пересечения луча с плоскостью называется проекцией точки А . Прямая А А 1 (луч), называется проецирующим лучом .


Рис.1.

Центральный (конический или полярный) метод проецирования основан на том, что при проецировании на плоскость ряда точек (А , B , C и т.д.) все проецирующие лучи проходят через одну точку, называемую центром проецирования , или полюсом .

Представим в пространстве треугольник АВС и проецирующие лучи, проходящие через данный полюс S и через точки АВС треугольника, проведенные до пересечения с плоскостью α. Треугольник А 1 B 1 C 1 будет центральной проекцией треугольника АВС (рис.2).

Метод центрального проецирования не удовлетворяет целому ряду условий, необходимых для технического чертежа, а именно: не дает однотипности изображения, полной ясности всех геометрических форм, не обладает удобоизмеримостью, не имеет простоты изображения.

Метод параллельного (косоугольного) проецирования заключается в том, что все проецирующие лучи, проходящие через точки треугольника АВС , будут параллельны между собой (рис.3). Этот метод вытекает из метода центрального проецирования, при этом полюс должен быть удален на бесконечно большое расстояние от плоскости, на которую проецируется предмет.

Ортогональный (прямоугольный) метод проецирования – метод, когда проецирующие лучи параллельны между собой и перпендикулярны к плоскости проекций (рис.4). Данный метод – частный случай параллельного проецирования.

Таким образом, любая точка пространства может быть спроецирована на плоскости проекций: на горизонтальную П 1 , фронтальную П 2 и профильную П 3 . Горизонтальная проекция точки обозначается А 1 или А ′, фронтальная А 2 или А ″, профильная А 3 или А ′″ (рис.5).

Для перехода от пространственного представления о предмете к его плоскому изображению используется метод проекций.

Для того чтобы трехмерный объект, находящийся в трехмерном пространстве, «перенести» на плоскость, т. е. получить его изображение, необходимо его спроецировать. Для этого, из выбранной определённым образом точки пространства, которая называется центром проекции, необходимо провести прямые линии (лучи) через каждую точку изображаемого объекта. Эти прямые называются проецирующими прямыми. Та плоскость, на которой мы получили изображение предмета называется плоскостью проекции, а изображение предмета, которое мы получим на этой плоскости называется его проекцией.

В зависимости от положения центра проецирования и направления проецирующих лучей по отношению к плоскости проекций проецирование может быть либо центральным (коническим), либо параллельным (цилиндрическим).

Наиболее общий случай получения проекций пространственных фигур — это центральное проецирование.

В этом случае проецирующие лучи выходят из одной точки — центра проецирования S , который находится на конечном расстоянии от плоскости проекций П 1 .

Для того чтобы получить центральные проекции точек А и B , необходимо провести проецирующие лучи из центра проецирования S через точки А и B до пересечения с плоскостью проекций П 1 . При пересечении получаются точки А 1 и B 1 — центральные проекции точек А и B .

Положение точки S и плоскости П 1 , которая не проходит через центр проекций, определяют аппарат центрального проецирования. Если он задан, то всегда можно определить положение центральной проекции любой точки пространства на плоскость проекции, при этом каждая точка пространства будет иметь только одну центральную проекцию. Однако, по одной центральной проекции невозможно определить положение точки в пространстве, так как она может находиться в любом месте прямой, соединяющей проекцию точки и центр проецирования.

Для того чтобы определить положение точки А в пространстве по её центральным проекциям, необходимо иметь две центральные проекции этой точки А 1 и А 2 , полученные из двух различных центров S 1 и S 2 . Если провести проецирующие лучи S 1 А 1 и S 2 А 2 , то точка их пересечения однозначно определит положение точки А в пространстве.

Для построения центральной проекции A 1 B 1 отрезка АВ достаточно построить центральные проекции А 1 и B 1 точек А и В , так как две точки однозначно определяют прямую.

Центральное проецирование обладает большой наглядностью, так как оно соответствует зрительному восприятию предметов.

Свойства проекций при центральном проецировании:

  1. Проекцией точки является точка.
  2. Проекцией линии является линия.
  3. Проекцией прямой в общем случае является прямая. (Если прямая совпадает с проецирующим лучом, то её проекцией является точка).
  4. Если точка принадлежит линии, то проекция точки принадлежит проекции линии.
  5. Точка пересечения линий проецируется в точку пересечения проекций этих линий.
  6. В общем случае плоский многогранник проецируется в многогранник с тем же числом вершин.
  7. Проекцией взаимно параллельных прямых является пучок прямых.
  8. Если плоская фигура параллельна плоскости проекций, то её проекция подобна этой фигуре.

Изображения на чертеже выполняют по правилам проецирования. Проецированием называется процесс получения изображения предмета на плоскости - бумаге, экране, классной доске и т. д. Получившееся при этом изображение называют проекцией .

«Проекция » — слово латинское. В переводе на русский язык оно означает «бросать (отбрасывать) вперед ».

В основе правил построения изображений на чертеже лежит метод проекций. Метод проекций - отображение геометрической фигуры на плоскость путем проецирования ее (фигуры) точек.

Чтобы построить изображение предмета по методу проекций, необходимо через точки на предмете (например, через его вершины) провести воображаемые лучи до встречи их с плоскостью. Лучи, которые проецируют предмет на плоскость, называются проецирующими .

Плоскость, на которой получается изображение предмета, называется плоскостью проекции .

Рис. 1. Понятия проецирования.

Способы изображения предметов отличаются друг от друга, как методами проецирования, так и условиями их построения. Одни способы дают более наглядное изображение, нетрудны для построения, другие менее наглядны, но зато более просты для построения.

Чтобы выяснить, что представляет собой метод проекций, обратимся к примерам.

Поместим перед электрической лампочкой какой-нибудь предмет. Тень, полученную на стене, можно принять за проекцию предмета. Положите на бумагу какой-нибудь плоский предмет и обведите его карандашом. Вы получите изображение, соответствующее проекции этого предмета.

Посмотрим процесс получения проекций геометрических фигур, из которых состоят дорожные знаки (рис. 2, 5, 8). Для построения изображений этих геометрических фигур использован метод проекций.

На рисунке 2,б проекцией точки А будет точка а , т.е. точка пересечения проецирующего луча Оа с плоскостью проекций. Проекцией точки В будет точка b и т. д. Если теперь соединить на плоскости эти точки прямыми линиями, то мы получим проекцию изображаемой фигуры, например треугольника.

Рис. 2 . Центральное проецирование

На изображениях точки в натуре, т е точки на предмете , будем обозначать большими (прописными ) буквами латинского алфавита. Проекции этих точек на плоскость обозначают теми же, но малыми (строчными ) буквами.

Рассмотренный пример построения изображений составляют сущность метода проекций .

Если проецирующие лучи, с помощью которых строится изображение предмета, расходятся из одной точки, проецирование называется центральным (рис. 2). Точка, из которой выходят лучи (О ), называется центром проецирования . Полученное при этом изображение предмета называется центральной проекцией .

Рис. 3. Центральное проецирование на плоскости.

Величина проекции зависит от положения предмета по отношению к картинной плоскости, а также от расстояния его до этой плоскости и до центра проецирования. На рис. 3, а предмет расположен между центром О и картинной плоскостью К и поэтому его изображение получается увеличенным. Если предмет расположить за плоскостью К (рис. 3, б), то изображение получится уменьшенным.

Центральные проекции часто называют перспективой . Взаимно параллельные линии предмета, не параллельные картинной плоскости, проецируются как группа линий, сходящихся в одной точке (рис. 4).

Рис. 4. Перспектива

Проекции каждой группы параллельных линий имеют свою точку схода О1 и О2 . Точки схода проекций всех групп параллельных линий расположены на одной прямой, называемой линией горизонта. Предмет, изображенный на рис. 4, расположенпо отношению к картинной плоскости так, что ни одна из его граней не параллельна этой плоскости. Такую центральную проекцию называют угловой перспективой .

Изображение, полученное методом центрального проецирования, сходно с фотографией, так как оно получается примерно таким, каким его видит глаз человека. Также примерами центральной проекции являются кинокадры, тени, отброшенные от предмета лучами электрической лампочки, и др. Метод центрального проецирования используется в архитектуре, строительстве, а также в академическом рисовании - рисовании с натуры.

Если проецирующие лучи параллельны друг другу, то проецирование называется параллельным , а полученное изображение - параллельной проекцией . Примером параллельной проекции являются солнечные тени (рис. 5, 8).

Рис.5. Параллельное проецирование

При параллельном проецировании все лучи падают на плоскость проекций под одним и тем же углом.

Если это любой угол, отличный от прямого, то проецирование называется косоугольным (рис. 6). В косоугольной проекции, как и в центральной, форма и величина предмета искажаются. Однако строить предмет в параллельной косоугольной проекции проще, чем в центральной.

Рис.6. Параллельное косоугольное проецирование на плоскости.

В техническом черчении такие проекции используют для построения наглядных изображений (рис.7).

Рис. 7. Процесс поучения наглядного изображения.

В том случае, когда проецирующие лучи перпендикулярны к плоскости проекций (рис. 8), т. ё. составляют с ней угол в 90°. проецирование называют прямоугольным . Полученное при этом изображение называется прямоугольной проекцией предмета .


Рис.8.Параллельное прямоугольное проецирование.

Проекционное черчение имеет большое значение для развития пространственного представления, без которого невозможно сознательно читать чертежи и тем более выполнять их (рис 9).

Прямоугольные проекции называют также ортогональными . Слово "ортогональный " происходит от греческих слов "orthos " - прямой и "gonia " - угол.

Рис.9. Параллельное прямоугольное проецирование на плоскости

Способ прямоугольного проецирования является основным в черчении. Он используется для построения изображений на чертежах и наглядных изображений предметов, так как они достаточно наглядны и выполнять их проще, чем центральные.

Чертежи в системе прямоугольных проекций дают достаточно полные сведения о форме и размерах предмета, так как предмет изображается с нескольких сторон.


Close